【IWR_231226】Python餐饮业用户流失预测

发布时间:2023-12-26 付费文章:9.9元

Base

Github加速

 
点此查看

Civil

土木分类资料

 
点此查看

Python

Python编程学习

 
点此查看

Games

JS前端编程学习

 
点此查看

 

import random
import string
from datetime import datetime

def generate_random_string(length=3):
    characters = string.ascii_uppercase
    return ''.join(random.choice(characters) for _ in range(length))

def generate_timestamped_string(separator='_'):
    timestamp = datetime.now().strftime('%y%m%d') # %H%M%S
    random_part = generate_random_string(length=3)
    return random_part+separator+timestamp

timestamped_string = generate_timestamped_string()
print('【{0}】'.format(timestamped_string))

【Talk is cheap】

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# 读取数据
users = pd.read_csv('./data/user_loss.csv', encoding='gbk')
info = pd.read_csv('./data/info_new.csv', encoding='utf-8')
print('客户信息表的维数:', users.shape)
print('订单详情表的维数:', info.shape)
客户信息表的维数: (2431, 36)
订单详情表的维数: (6611, 21)
users.head()

 

 

 

打赏下载数据及源码


如忘记保存,或后续再查看,可凭“订单号” 手动获取