接上回,如何使用AI模型(如GPT、LLaMA),训练某一考试的教材、历年试题?
直接上代码,结合该功能与GPT进行搞基:
import os
import re
import shutil
import urllib.request
from pathlib import Path
from tempfile import NamedTemporaryFile
import fitz
import numpy as np
import openai
import tensorflow_hub as hub
from sklearn.neighbors import NearestNeighbors
# 对每页PDF进行预处理,生成一个text_list
def preprocess(text):
text = text.replace('\n', ' ')
text = re.sub('\s+', ' ', text)
return text
def pdf_to_text(path, start_page=1, end_page=None):
doc = fitz.open(path)
total_pages = doc.page_count
if end_page is None:
end_page = total_pages
text_list = []
for i in range(start_page - 1, end_page):
text = doc.load_page(i).get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
def text_to_chunks(texts, word_length=150, start_page=1):
text_toks = [t.split(' ') for t in texts]
page_nums = []
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i : i + word_length]
if (
(i + word_length) > len(words)
and (len(chunk) < word_length)
and (len(text_toks) != (idx + 1))
):
text_toks[idx + 1] = chunk + text_toks[idx + 1]
continue
chunk = ' '.join(chunk).strip()
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
# print({idx+start_page})
chunks.append(chunk)
return chunks
class SemanticSearch:
def __init__(self):
self.use = hub.load("F:/*******") # 中文
self.fitted = False
def fit(self, data, batch=100, n_neighbors=3): # batch=1000, n_neighbors=5
self.data = data
self.embeddings = self.get_text_embedding(data, batch=batch)
n_neighbors = min(n_neighbors, len(self.embeddings))
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
self.nn.fit(self.embeddings)
self.fitted = True
def __call__(self, text, return_data=True):
inp_emb = self.use([text])
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
if return_data:
return [self.data[i] for i in neighbors]
else:
return neighbors
def get_text_embedding(self, texts, batch=1000):
embeddings = []
for i in range(0, len(texts), batch):
text_batch = texts[i : (i + batch)]
emb_batch = self.use(text_batch)
embeddings.append(emb_batch)
embeddings = np.vstack(embeddings)
return embeddings
def load_recommender(path, start_page=1):
global recommender
texts = pdf_to_text(path, start_page=start_page)
chunks = text_to_chunks(texts, start_page=start_page)
recommender.fit(chunks)
return 'Corpus Loaded.'
# 开始训练语料库
pdf_path='第3章 岩土工程勘察.pdf'
recommender = SemanticSearch()
load_recommender(pdf_path) # 使用fit生成语料库
question='钻孔深度相关规定?'
topn_chunks = recommender(question)
print(topn_chunks)
def generate_answer(question, openAI_key):
topn_chunks = recommender(question)
prompt = ""
prompt += 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += (
"Instructions: Compose a comprehensive reply to the query using the search results given. "
"Cite each reference using [ Page Number] notation (every result has this number at the beginning). "
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "
"with the same name, create separate answers for each. Only include information found in the results and "
"don't add any additional information. Make sure the answer is correct and don't output false content. "
"If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "
"search results which has nothing to do with the question. Only answer what is asked. The "
"answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "
)
prompt += f"Query: {question}\nAnswer:"
answer = generate_text(openAI_key, prompt, "text-davinci-003")
# answer = handle_message(prompt)
return answer
def generate_text(openAI_key, prompt, engine="text-davinci-003"):
openai.api_key = openAI_key
completions = openai.Completion.create(
engine=engine,
prompt=prompt,
max_tokens=512,
n=1,
stop=None,
temperature=0.7,
)
message = completions.choices[0].text
return message
openAI_key = 'sk-zo59kJ9gV7yx8xgsn8jrT3BlbkFJT******'
generate_answer(question, openAI_key)
以上类似于AutoGPT或chatPDF的实现原理,感兴趣的读者可以试试。
付费后可以获得中文分词模型450M及4个Openai-Key【共享】
如忘记保存,或后续再查看,可凭“订单号” 手动获取